https://doi.org/10.1016/j.ijbiomac.2024.134906 ·
Journal: International Journal of Biological Macromolecules, 2024, p.134906
Publisher: Elsevier BV
Authors: Gen Liu, Yahui Ji, Chenchen Lei, Hui Gao
Funder National Natural Science Foundation of China
List of references
- Lu, Molecular mechanisms of bioactive polysaccharides from ganoderma lucidum (Lingzhi), a review, Int. J. Biol. Macromol., № 150, с. 765
https://doi.org/10.1016/j.ijbiomac.2020.02.035 - Milhorini, Antimelanoma effect of a fucoxylomannan isolated from Ganoderma lucidum fruiting bodies, Carbohydr. Polym., № 294
- Xu, Effect of liquid fermented Chinese edible ganoderma lucidum fungus on wheat bread: a quality improver and staling inhibitor, Food Control, № 155
https://doi.org/10.1016/j.foodcont.2023.110060 - Camargo, Ganoderma lucidum polysaccharides inhibit in vitro tumorigenesis, cancer stem cell properties and epithelial-mesenchymal transition in oral squamous cell carcinoma, J. Ethnopharmacol., № 286
https://doi.org/10.1016/j.jep.2021.114891 - Li, Effects of drying methods on bioactive components of Ganoderma lucidumfermented whole wheat in products & in vitro digestive model, Food Res. Int., № 168
https://doi.org/10.1016/j.foodres.2023.112641 - Zhang, Recent advances in ganoderma lucidum polysaccharides: structures/bioactivities, biosynthesis and regulation, Food Biosci., № 56
https://doi.org/10.1016/j.fbio.2023.103281 - Wen, Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity, Food Chem., № 373
https://doi.org/10.1016/j.foodchem.2021.131374 - Liu, Hypoglycemic effect of inulin combined with ganoderma lucidum polysaccharides in T2DM rats, J. Funct. Foods, № 55, с. 381
https://doi.org/10.1016/j.jff.2019.02.036 - Li, Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system, Brain Res. Bull., № 171, с. 16
https://doi.org/10.1016/j.brainresbull.2021.03.002 - Li, Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization, Int. J. Biol. Macromol., № 260
https://doi.org/10.1016/j.ijbiomac.2024.129682 - Obeng, Apoptosis (programmed cell death) and its signals - a review, Braz. J. Biol., № 81, с. 1133
https://doi.org/10.1590/1519-6984.228437 - Erekat, Programmed cell death in diabetic nephropathy: a review of apoptosis, autophagy, and necroptosis, Med. Sci. Monit., № 28
https://doi.org/10.12659/MSM.937766 - D'Arcy, Cell death: a review of the major forms of apoptosis, necrosis and autophagy, Cell Biol. Int., № 43, с. 582
https://doi.org/10.1002/cbin.11137 - Geske, The biology of apoptosis, Hum. Pathol., № 32, с. 1029
https://doi.org/10.1053/hupa.2001.28250 - Niu, Lighting up the changes of plasma membranes during apoptosis with fluorescent probes, Coord. Chem. Rev., № 476
https://doi.org/10.1016/j.ccr.2022.214926 - Rana, Metals and apoptosis: recent developments, J. Trace Elem. Med. Biol., № 22, с. 262
https://doi.org/10.1016/j.jtemb.2008.08.002 - Erekat, Apoptosis and its therapeutic implications in neurodegenerative diseases, Clin. Anat., № 35, с. 65
https://doi.org/10.1002/ca.23792 - Bai, A caspase-3-activatable bimodal probe for photoacoustic and magneticresonance imaging of tumor apoptosis in vivo, Biosens. Bioelectron., № 216
https://doi.org/10.1016/j.bios.2022.114648 - Chang, Free fatty acids induce apoptosis of mammary epithelial cells of ketotic dairy cows via the mito-ROS/NLRP3 signaling pathway, J. Agric. Food Chem., № 71, с. 12645
https://doi.org/10.1021/acs.jafc.3c02090 - Kim, Titanium dioxide nanoparticles induce apoptosis by interfering with EGFR signaling in human breast cancer cells, Environ. Res., № 175, с. 117
https://doi.org/10.1016/j.envres.2019.05.001 - Abou-Zied, EGFR inhibitors and apoptotic inducers: design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules, Bioorg. Chem., № 89
https://doi.org/10.1016/j.bioorg.2019.102997 - Carneiro, Targeting apoptosis in cancer therapy, Nat. Rev. Clin. Oncol., № 17, с. 395
https://doi.org/10.1038/s41571-020-0341-y - Renu, Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium) - induced hepatotoxicity - a review, Chemosphere, № 271
https://doi.org/10.1016/j.chemosphere.2021.129735 - Ozturk, Arsenic and human health: genotoxicity, epigenomic effects, and cancer signaling, Biol. Trace Elem. Res., № 200, с. 988
https://doi.org/10.1007/s12011-021-02719-w - Wang, Therapeutic strategy of arsenic trioxide in the fight against cancers and other diseases, Metallomics, № 12, с. 326
https://doi.org/10.1039/c9mt00308h - Sadaf, Arsenic trioxide induces apoptosis and inhibits the growth of human liver cancer cells, Life Sci., № 205, с. 9
https://doi.org/10.1016/j.lfs.2018.05.006 - Tang, Olaparib synergizes with arsenic trioxide by promoting apoptosis and ferroptosis in platinum-resistant ovarian cancer, Cell Death Dis., № 13, с. 826
https://doi.org/10.1038/s41419-022-05257-y - Yu, Arsenic trioxide activates yes-associated protein by lysophosphatidic acid metabolism to selectively induce apoptosis of vascular smooth muscle cells, Biochim. Biophys. Acta Mol. Cell Res., № 1869
https://doi.org/10.1016/j.bbamcr.2022.119211 - Khosravani, Arsenic trioxide and Erlotinib loaded in RGD-modified nanoliposomes for targeted combination delivery to PC3 and PANC-1 cell lines, Biotechnol. Appl. Biochem., № 70, с. 811
https://doi.org/10.1002/bab.2401 - Khan, Glucogallin attenuates RAW 264.7 cells from arsenic trioxide induced toxicity via the NF-ҡB/NLRP3 pathway, Molecules, № 27, с. 5263
https://doi.org/10.3390/molecules27165263 - Huang, Honokiol attenuate the arsenic trioxide-induced cardiotoxicity by reducing the myocardial apoptosis, Pharmacol. Res. Perspect., № 10
https://doi.org/10.1002/prp2.914 - Peng, A tandem DNA nanomachines-supported electrochemiluminescence assay for attomolar detection of miRNA at ambient-temperature, Chem. Eng. J., № 480
https://doi.org/10.1016/j.cej.2023.148161 - Wei, Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis, Chem. Commun., № 59, с. 3507
https://doi.org/10.1039/D2CC06930J - Scarabelli, Towards Electrochemiluminescence microscopy exploration of plasmonic-mediated phenomena at the single-nanoparticle level, Angew. Chem. Int. Ed., № 62
https://doi.org/10.1002/anie.202217614 - Descamps, Ultrasensitive imaging of cells and sub-cellular entities by electrochemiluminescence, Angew. Chem. Int. Ed., № 62
https://doi.org/10.1002/anie.202218574 - Zhang, Recent progress in electrochemiluminescence microscopy analysis of single cells, Analyst, № 147, с. 2884
https://doi.org/10.1039/D2AN00709F - Muzyka, Current trends in the development of the electrochemiluminescent immunosensors, Biosens. Bioelectron., № 54, с. 393
https://doi.org/10.1016/j.bios.2013.11.011 - Wang, Dual intramolecular electron transfer for in situ coreactant-embedded electrochemiluminescence microimaging of membrane protein, Angew. Chem. Int. Ed., № 60, с. 197
https://doi.org/10.1002/anie.202011176 - Liu, Single biomolecule imaging by electrochemiluminescence, J. Am. Chem. Soc., № 143, с. 17910
https://doi.org/10.1021/jacs.1c06673 - Dong, Direct imaging of single-molecule electrochemical reactions in solution, Nature, № 596, с. 244
https://doi.org/10.1038/s41586-021-03715-9 - Liu, Potential-resolved electrochemiluminescence nanoprobes for visual apoptosis evaluation at single-cell level, Anal. Chem., № 91, с. 6363
https://doi.org/10.1021/acs.analchem.9b01401 - Bommareddy, α-Santalol, a derivative of sandalwood oil, induces apoptosis in human prostate cancer cells by causing caspase-3 activation, Phytomedicine, № 19, с. 804
https://doi.org/10.1016/j.phymed.2012.04.003
About this publication
Publication type | Журнальна стаття |
Number of citations | 0 |
Number of works in the list of references | 42 |
Journal indexed in Scopus | Yes |
Journal indexed in Web of Science | Yes |